skip to main content


Search for: All records

Creators/Authors contains: "Gartner, Jacqueline"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In Fall 2018 our small liberal arts university with a new engineering program was awarded an NSF S-STEM grant. Now with three cohorts admitted to the program, we present the retention data of students that have participated in the program versus a comparable control data set from the School of Engineering. The students under study range from those currently in their second year of undergraduate engineering to those that have graduated in the past two years. Thus, the data include those students that have both graduated and those that continue to seek a baccalaureate degree. In the analysis, the two comparable data sets are broken into demographics for comparison where appropriate, including race, ethnicity, GPA, starting university math course, and gender. We investigate the degree to which elements of the S-STEM program (faculty and peer mentoring, career services, and professional development trainings) yield higher retention data for the S-STEM group. With the analysis, we explore whether any of these demographic factors moderate the relationship between program participation and retention. 
    more » « less
  2. Over the past year we continued, under support from the NSF Division of Undergraduate Education, to emphasize implementation of Low-Cost Desktop Learning Modules LCDLMs for fluid mechanics, heat transfer and biomedical applications. Here we present implementation data from concept tests and surveys, details on new designs and insights gained. Through these activities our team progressed beyond original expectations that were outlined in our original set of NSF-sponsored objectives. We analyzed data from several institutions added from the south central and mid-eastern portions of the US through a combined University of ***-L** and -P** training hub conducted in a virtual mode held in September 2020 with regional communications spearheaded by respective faculty from these institutions. Much of the data analyzed results from support through a 2020 NSF supplement where we engaged in a study to compare direct hands-on implementations of LCDLMs to virtual synchronous and asynchronous implementations augmented with short conceptual videos, a tact necessary because of COVID-19 in-person restrictions. Surprisingly, both in-person and virtual modes show similar conceptual gains. A publication is being developed with intent for submission to the International Journal of Engineering Education where we compare the virtual and in-person modes of instruction. We added a few more institutions through a northeastern training hub held in August 2021 with faculty from the University of *** managing regional communications; again, this hub was held virtually given uncertainty about the lifting of COVID-19 related restrictions. Regarding new LCDLMs we added a shell and tube heat exchanger and fabricated a large number for distribution and implementation and began analyzing conceptual gains and survey results. We prototyped a new evaporative cooler and continue to develop new broader impact units to demonstrate stenosis in an artery and blood cell separations and began implementing them in the classroom. Regarding LCDLM publications a paper was published in Chemical Engineering Education on a study where we compare heat transfer data for the miniature double pipe heat exchanger to predictions based on correlations for industrial scale heat exchangers and included classroom assessment data. 
    more » « less
  3. Although there is extensive literature documenting hands-on learning experiences in engineering classrooms, there is a lack of consensus regarding how student learning during these activities compares to learning during online video demonstrations. Further, little work has been done to directly compare student learning for similarly-designed hands-on learning experiences focused on different engineering subjects. As the use of hands-on activities in engineering continues to grow, understanding how to optimize student learning during these activities is critical. To address this, we collected conceptual assessment data from 763 students at 15 four-year institutions. Students completed activities with one of two highly visual low-cost desktop learning modules (LCDLMs), one focused on fluid mechanics and the other on heat transfer principles, using two different implementation formats: either hands-on or video demonstration. Conceptual assessment results showed that assessment scores significantly increased after all LCDLM activities and that gains were statistically similar for hands-on and video demonstrations, suggesting both implementation formats support an impactful student learning experience. However, a significant difference was observed in effectiveness based on the type of LCDLM used. Score increases of 31.2% and 24% were recorded on our post-activity assessment for hands-on and virtual implementations of the fluid mechanics LCDLM compared to pre-activity assessment scores, respectively, while significantly smaller 8.2% and 9.2% increases were observed for hands-on and virtual implementations of the heat transfer LCDLM. In this paper, we consider existing literature to ascertain the reasons for similar effectiveness of hands-on and video demonstrations and for the differing effectiveness of the fluid mechanics and heat transfer LCDLMs. We discuss the practical implications of our findings with respect to designing hands-on or video demonstration activities. 
    more » « less
  4. Hands-on experiments using the Low-Cost Desktop Learning Modules (LCDLMs) have been implemented in dozens of classrooms to supplement student learning of heat transfer and fluid mechanics concepts with students of varying prior knowledge. The prior knowledge of students who encounter these LCDLMs in the classroom may impact the degree to which students learn from these interactive pedagogies. This paper reports on the differences in student cognitive learning between groups with low and high prior knowledge of the concepts that are tested. Student conceptual test results for venturi, hydraulic loss, and double pipe heat exchanger LCDLMs are analyzed by grouping the student data into two bins based on pre-test score, one for students scoring below 50% and another for those scoring above and comparing the improvement from pretest to posttest between the two groups. The analysis includes data from all implementations of each LCDLM for the 2020-2021 school year. Results from each of the three LCDLMs were analyzed separately to compare student performance on different fluid mechanics or heat exchanger concepts. Then, the overall pre- and posttest scores for all three LCDLMs were analyzed to examine how this interactive pedagogy impacts cognitive gains. Results showed statistically significant differences in improvement between low prior knowledge groups and high prior knowledge groups. Additional findings showed statistically significant results suggesting that the gaps in performance between low prior knowledge and high prior knowledge groups on pre-tests for the LCDLMs were decreased on the posttest. Findings showed that students with lower prior knowledge show a greater overall improvement in cognitive gains than those with higher prior knowledge on all three low-cost desktop learning modules. 
    more » « less
  5. Our team has developed Low-Cost Desktop Learning Modules (LCDLMS) as tools to study transport phenomena aimed at providing hands-on learning experiences. With an implementation design embedded in the community of inquiry framework, we disseminate units to professors across the country and train them on how to facilitate teacher presence in the classroom with the LC-DLMs. Professors are briefed on how create a homogenous learning environment for students based on best-practices using the LC-DLMs. By collecting student cognitive gain data using pre/posttests before and after students encounter the LC-DLMs, we aim to isolate the variable of the professor on the implementation with LC-DLMs. Because of the onset of COVID-19, we have modalities for both hands-on and virtual implementation data. An ANOVA whereby modality was grouped and professor effect was the independent variable had significance on the score difference in pre/posttest scores (p<0.0001) and on posttest score only (p=0.0004). When we divide out modality between hands-on and virtual, an ANOVA with an Ftest using modality as the independent variable and professor effect as the nesting variable also show significance on the score difference between pre and posttests (p-value=0.0236 for handson, and p-value=0.0004 for virtual) and on the posttest score only (p-value=0.0314 for hands-on, and p-value<0.0001 for virtual). These results indicate that in all modalities professor had an effect on student cognitive gains with respect to differences in pre/posttest score and posttest score only. Future will focus on qualitative analysis of features of classrooms yield high cognitive gains in undergraduate engineering students. 
    more » « less
  6. null (Ed.)
    A recent S-STEM award has allowed the engineering program in a rural, liberal arts institution to offer a need-based scholarship program for its students. The engineering program has a number of veteran, underrepresented minority, transfer, and nontraditional students. Many students are also first-generation college students. The institution and engineering program matriculate a number of under-served populations, students who may have needs that are not well understood in the typical engineering education literature. The scholarship program and its associated mentoring and activities will assist workforce development and will also incorporate a number of research avenues to better understand and serve the student population in this unique setting. To apply for the program, students must fill out an application with four 250 – 500 word essay responses relating to their academic progress, perceived barriers to degree completion, and how this award would help them to complete their degree. This study continues work using personas, a method used in human-centered design. Using the first round of scholarship application essays as a source, three personas were developed, one successful applicant, one unsuccessful applicant, and one general applicant. Personas are detailed profiles of a fake person who could reasonably be in each category of interest. In human-centered design, personas are detailed descriptions of likely clients or end-users, developed to help the engineers focus on who they might be designing for. The profiles developed in this study were used to gain insight into which students were likely to choose to apply and which students may be missing out on this opportunity. It is time for another round of applications for this grant and the use of personas will continue and expand as part of this study. Before reviewing applications, the committee will create two personas as ideal candidates instead of developing a standardized rubric. Subsequently, three personas will be developed from the Fall 2020 applications, one for all applicants, one for successful applicants, and one for unsuccessful applicants. These personas will then be compared to the personas created by the application review committee and the personas created from the Fall 2018 applicants. Similarities and differences across the persona groups will be explored to determine whether the applicants are what the reviewers expected and whether the pool of applicants has evolved or remained mostly the same throughout the scholarship program. Review committee members will also be interviewed in a focus group setting to discuss their experiences using common personas rather than standardized rubrics in the application review process. At this time, the applications are not yet due and the analysis has not yet begun. Initial interest for the grant has been strong and we anticipate at least thirty applications for the nineteen available grants. Results presented will include the student profiles and faculty experiences with the use of personas as a metric for reviewing student applications. 
    more » « less
  7. null (Ed.)
    This study focuses on a new engineering program in a rural, liberal arts university. The engineering program has a number of veteran, underrepresented minority, transfer, and nontraditional students. Many students are also first-generation college students. The institution and engineering program matriculate a number of under-served populations, students who may have needs that are not well understood in the typical engineering education literature. Due to the unique nature of this program, exploring the social capital networks of the students in the first four years of the program will offer insight into the students in this context. This study will use Lin’s model of social capital as a framework. Social capital can be defined as the resources that are gained from relationships, or “it’s not what you know, it’s who you know”. The knowledge that is found within a student’s social network are a form of capital. Students must not only have people within their network that provide cultural, economic, and human capital, but also be able to access those resources and be able to purposely activate those resources. The instrument used in this survey is based on Martin’s work with the Name and Resource Generator as adapted by Boone in work focusing on first-generation college students. In this instrument, students are asked to name up to eight people who have had an influence on their engineering-related decisions. They are asked to provide some background on each person, including their relationship, what they know of the person’s career and educational background, and how long they have known this person. Students may offer as little as one or as many as eight influencers. Additionally, students are asked to list relationships of people who have provided them with a number of resources related to engineering knowledge, activities, and advice. The department and especially the first-year curricular requirements and extracurricular offerings have been designed using a community of practice model. It is hoped that as part of the focus on creating this community within engineering that all students’ networks will expand to include faculty, peers, and others within the engineering community of practice. Faculty and peers within the school of engineering will be identified and will be an additional focus of this study. At this time, analysis has begun on a subset of the survey responses. Initial results are consistent with social capital literature, finding that first-generation college students are more likely to have smaller networks focusing on family, with one student in the study listing a single person as having an impact on their engineering decisions. Most students have also listed at least one faculty or peer at the university as well. Results presented will include typical network analysis to understand how the students in this unique context compare to published studies. We will also generate map of student networks focusing on department-specific connections including peers and faculty. Additional results of interest include discrepancies between the interview and the follow-up survey. 
    more » « less
  8. null (Ed.)
    A small liberal arts university in the south received an S-STEM grant in 2018 focused on the School of Engineering. Important factors in the program's success are applicant recruitment and cohort building. Our recruiting efforts targeted at-risk students who entered the University with less math preparation. In the first year, we met our goals for recruitment in terms of overall applicant numbers but not in terms of the number of at-risk students. In the second year, we had fewer overall applicants, but the proportion that were at-risk was higher. In the area of cohort building, feedback from the scholarship recipients indicated our programming did not build community or provide opportunities for them to meet students in the other years. In that first year, the project team organized and led professional development and social events. The social events had little structure, and attendance was poor. In the second year, we hired a consultant to provide sessions for students on topics such as value identification, gratitude, and mindfulness. The sessions had positive student feedback. In addition to providing professional development skills, the interactivity of the sessions helped build a stronger cohort. This paper reviews the lessons learned from the first two years and reports on the results of the third-year program implementation. 
    more » « less
  9. null (Ed.)
    The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-toface environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited to virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3Dprinted miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2- day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the ASEE Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning. 
    more » « less
  10. null (Ed.)
    The 2020 coronavirus pandemic necessitated the transition of courses across the United States from in-person to a virtual format. Effective delivery of traditional, lecture-based courses in an online setting can be difficult and determining how to best implement hands-on pedagogies in a virtual format is even more challenging. Interactive pedagogies such as hands-on learning tools, however, have proven to significantly enhance student conceptual understanding and motivation; therefore, it is worthwhile to adapt these activities for virtual instruction. Our team previously developed a number of hands-on learning tools called Low-Cost Desktop Learning Modules (LCDLMs) that demonstrate fluid mechanics and heat transfer concepts—traditionally utilized by student groups in a classroom setting, where they perform qualitative and quantitative experiments and interactively discuss conceptual items. In this paper we examined the transition of the LCDLM hands-on pedagogy to an entirely virtual format, focusing on a subset of results with greater detail to be shown at the ASEE conference as we analyze additional data. To aid the virtual implementations, we created a number of engaging videos under two major categories: (1) demonstrations of each LCDLM showing live data collection activities and (2) short, animated, narrated videos focused on specific concepts related to learning objectives. In this paper we present preliminary results from pre- and post- implementation conceptual assessments for the hydraulic loss module and motivational surveys completed for virtual implementations of LCDLMs and compare them with a subset of results collected during hands-on implementations in previous years. Significant differences in conceptual understanding or motivation between hands-on and virtual implementations are discussed. This paper provides useful, data-driven guidance for those seeking to switch hands-on pedagogies to a virtual format 
    more » « less